VectorDbs
Pinecone Agent Knowledge
Setup
Follow the instructions in the Pinecone Setup Guide to get started quickly with Pinecone.
Example
agent_with_knowledge.py
PineconeDB Params
Parameter | Type | Default | Description |
---|---|---|---|
name | str | - | The name of the Pinecone index |
dimension | int | - | The dimension of the embeddings |
spec | Union[Dict, ServerlessSpec, PodSpec] | - | The index spec |
embedder | Optional[Embedder] | None | Embedder instance for creating embeddings (defaults to OpenAIEmbedder if not provided) |
metric | Optional[str] | "cosine" | The metric used for similarity search |
additional_headers | Optional[Dict[str, str]] | None | Additional headers to pass to the Pinecone client |
pool_threads | Optional[int] | 1 | The number of threads to use for the Pinecone client |
namespace | Optional[str] | None | The namespace for the Pinecone index |
timeout | Optional[int] | None | The timeout for Pinecone operations |
index_api | Optional[Any] | None | The Index API object |
api_key | Optional[str] | None | The Pinecone API key |
host | Optional[str] | None | The Pinecone host |
config | Optional[Config] | None | The Pinecone config |
use_hybrid_search | bool | False | Whether to use hybrid search |
hybrid_alpha | float | 0.5 | The alpha value for hybrid search |
Was this page helpful?