VectorDbs
PgVector Agent Knowledge
Setup
Example
agent_with_knowledge.py
PgVector Params
Parameter | Type | Default | Description |
---|---|---|---|
table_name | str | - | The name of the table to use. |
schema | str | - | The schema to use. |
db_url | str | - | The database URL to connect to. |
db_engine | Engine | - | The database engine to use. |
embedder | Embedder | - | The embedder to use. |
search_type | SearchType | vector | The search type to use. |
vector_index | Union[Ivfflat, HNSW] | - | The vector index to use. |
distance | Distance | cosine | The distance to use. |
prefix_match | bool | - | Whether to use prefix matching. |
vector_score_weight | float | 0.5 | Weight for vector similarity in hybrid search. Must be between 0 and 1. |
content_language | str | - | The content language to use. |
schema_version | int | - | The schema version to use. |
auto_upgrade_schema | bool | - | Whether to auto upgrade the schema. |
Was this page helpful?