Setup

pip install lancedb

Example

agent_with_knowledge.py
import typer
from typing import Optional
from rich.prompt import Prompt

from phi.agent import Agent
from phi.knowledge.pdf import PDFUrlKnowledgeBase
from phi.vectordb.lancedb import LanceDb
from phi.vectordb.search import SearchType

# LanceDB Vector DB
vector_db = LanceDb(
    table_name="recipes",
    uri="/tmp/lancedb",
    search_type=SearchType.keyword,
)

# Knowledge Base
knowledge_base = PDFUrlKnowledgeBase(
    urls=["https://phi-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
    vector_db=vector_db,
)

# Comment out after first run
knowledge_base.load(recreate=True)


def lancedb_agent(user: str = "user"):
    run_id: Optional[str] = None

    agent = Agent(
        run_id=run_id,
        user_id=user,
        knowledge=knowledge_base,
        show_tool_calls=True,
        debug_mode=True,
    )

    if run_id is None:
        run_id = agent.run_id
        print(f"Started Run: {run_id}\n")
    else:
        print(f"Continuing Run: {run_id}\n")

    while True:
        message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
        if message in ("exit", "bye"):
            break
        agent.print_response(message)


if __name__ == "__main__":
    typer.run(lancedb_agent)

LanceDb Params

ParameterTypeDefaultDescription
uristr-The URI to connect to.
tableLanceTable-The Lance table to use.
table_namestr-The name of the table to use.
connectionDBConnection-The database connection to use.
api_keystr-The API key to use.
embedderEmbedder-The embedder to use.
search_typeSearchTypevectorThe search type to use.
distanceDistancecosineThe distance to use.
nprobesint-The number of probes to use. More Info
rerankerReranker-The reranker to use. More Info
use_tantivybool-Whether to use tantivy.