The MistralEmbedder class is used to embed text data into vectors using the Mistral API. Get your key from here.

Usage

from phi.agent import Agent, AgentKnowledge
from phi.vectordb.pgvector import PgVector
from phi.embedder.mistral import MistralEmbedder

# Create knowledge base
knowledge_base=AgentKnowledge(
    vector_db=PgVector(
        db_url=db_url,
        table_name=embeddings_table,
        embedder=MistralEmbedder(api_key=***),
    ),
    # 2 references are added to the prompt
    num_documents=2,
),

# Add information to the knowledge base
knowledge_base.load_text("The sky is blue")

# Add the knowledge base to the Agent
agent = Agent(knowledge_base=knowledge_base)

Params

ParameterTypeDefaultDescription
modelstr"mistral-embed"The name of the model used for generating embeddings.
dimensionsint1024The dimensionality of the embeddings generated by the model.
request_paramsOptional[Dict[str, Any]]-Additional parameters to include in the API request. Optional.
api_keystr-The API key used for authenticating requests.
endpointstr-The endpoint URL for the API requests.
max_retriesOptional[int]-The maximum number of retries for API requests. Optional.
timeoutOptional[int]-The timeout duration for API requests. Optional.
client_paramsOptional[Dict[str, Any]]-Additional parameters for configuring the API client. Optional.
mistral_clientOptional[MistralClient]-An instance of the MistralClient to use for making API requests. Optional.