Agents use storage to persist sessions by storing them in a database.
Agents come with built-in memory, but it only lasts while the session is active. To continue conversations across sessions, we store agent sessions in a database like PostgreSQL.
The general syntax for adding storage to an Agent looks like:
from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.tools.duckduckgo import DuckDuckGo
from phi.storage.agent.postgres import PgAgentStorage
agent = Agent(
model=OpenAIChat(id="gpt-4o"),
storage=PgAgentStorage(table_name="agent_sessions", db_url="postgresql+psycopg://ai:ai@localhost:5532/ai"),
tools=[DuckDuckGo()],
show_tool_calls=True,
add_history_to_messages=True,
)
agent.print_response("How many people live in Canada?")
agent.print_response("What is their national anthem called?")
agent.print_response("Which country are we speaking about?")
Example
Run Postgres
Install docker desktop and run Postgres on port 5532 using:
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
phidata/pgvector:16
Create an Agent with Storage
Create a file agent_with_storage.py
with the following contents
import typer
from typing import Optional, List
from phi.agent import Agent
from phi.storage.agent.postgres import PgAgentStorage
from phi.knowledge.pdf import PDFUrlKnowledgeBase
from phi.vectordb.pgvector import PgVector, SearchType
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://phi-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(table_name="recipes", db_url=db_url, search_type=SearchType.hybrid),
)
# Load the knowledge base: Comment after first run
knowledge_base.load(upsert=True)
storage = PgAgentStorage(table_name="pdf_agent", db_url=db_url)
def pdf_agent(new: bool = False, user: str = "user"):
session_id: Optional[str] = None
if not new:
existing_sessions: List[str] = storage.get_all_session_ids(user)
if len(existing_sessions) > 0:
session_id = existing_sessions[0]
agent = Agent(
session_id=session_id,
user_id=user,
knowledge=knowledge_base,
storage=storage,
# Show tool calls in the response
show_tool_calls=True,
# Enable the agent to read the chat history
read_chat_history=True,
# We can also automatically add the chat history to the messages sent to the model
# But giving the model the chat history is not always useful, so we give it a tool instead
# to only use when needed.
# add_history_to_messages=True,
# Number of historical responses to add to the messages.
# num_history_responses=3,
)
if session_id is None:
session_id = agent.session_id
print(f"Started Session: {session_id}\n")
else:
print(f"Continuing Session: {session_id}\n")
# Runs the agent as a cli app
agent.cli_app(markdown=True)
if __name__ == "__main__":
typer.run(pdf_agent)
Run the agent
Install libraries
pip install -U phidata openai pgvector pypdf "psycopg[binary]" sqlalchemy
Run the agent
python agent_with_storage.py
Now the agent continues across sessions. Ask a question:
Then message bye
to exit, start the app again and ask:
What was my last message?
Start a new run
Run the agent_with_storage.py
file with the --new
flag to start a new run.
python agent_with_storage.py --new
Params
Parameter | Type | Default | Description |
---|
storage | Optional[AgentStorage] | None | Storage mechanism for the agent, if applicable. |