from phi.agent import Agent
from phi.knowledge.langchain import LangChainKnowledgeBase
from langchain.embeddings import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
chroma_db_dir = "./chroma_db"
def load_vector_store():
state_of_the_union = ws_settings.ws_root.joinpath("data/demo/state_of_the_union.txt")
raw_documents = TextLoader(str(state_of_the_union)).load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
Chroma.from_documents(documents, OpenAIEmbeddings(), persist_directory=str(chroma_db_dir))
db = Chroma(embedding_function=OpenAIEmbeddings(), persist_directory=str(chroma_db_dir))
retriever = db.as_retriever()
knowledge_base = LangChainKnowledgeBase(retriever=retriever)
agent = Agent(knowledge_base=knowledge_base, add_references_to_prompt=True)
conv.print_response("What did the president say about technology?")