Integrations
Pinecone Integration
Examples
- Introduction
- Agents
- Models
- Integrations
- Agent Teams
- Use Cases
How To
Integrations
Pinecone Integration
Example
import os
import typer
from typing import Optional
from rich.prompt import Prompt
from phi.agent import Agent
from phi.knowledge.pdf import PDFUrlKnowledgeBase
from phi.vectordb.pineconedb import PineconeDB
api_key = os.getenv("PINECONE_API_KEY")
index_name = "thai-recipe-hybrid-search"
vector_db = PineconeDB(
name=index_name,
dimension=1536,
metric="cosine",
spec={"serverless": {"cloud": "aws", "region": "us-east-1"}},
api_key=api_key,
use_hybrid_search=True,
hybrid_alpha=0.5,
)
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://phi-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
# Comment out after first run
knowledge_base.load(recreate=True, upsert=True)
def pinecone_agent(user: str = "user"):
run_id: Optional[str] = None
agent = Agent(
run_id=run_id,
user_id=user,
knowledge=knowledge_base,
show_tool_calls=True,
debug_mode=True,
)
if run_id is None:
run_id = agent.run_id
print(f"Started Run: {run_id}\n")
else:
print(f"Continuing Run: {run_id}\n")
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
typer.run(pinecone_agent)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
2
Install libraries
pip install -U pinecone pypdf openai phidata
3
Run Pinecone Agent
Information
- View on Github
On this page